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ABSTRACT

In this paper we characterize all convex functionals defined on certain
convex sets of hermitian matrices and which depend only on the eigenvalues of
matrices. We extend these results to certain classes of non-negative matrices.
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of non-negative matrices, which are of independent interest.
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SIGNIFICANCE AND EXPLANATION

The following result is useful in connection with matrix applications: If

Al(A) denotes the largest eigenvalue of a hermitian matrix A, then
(1) Al(A+B)_i Al(A) + Al(B) '

i.e., if A and B are hermitian matrices, the largest eigenvalue of A+B is

at most the sum of the largest eigenvalue of A and B. The quantity Al(A) is

a functional, i.e. a scalar depending on the matrix A. The above example suggests
the following problem which is solved in this paper: Determine all functionals
¢(A) depending only on the eigenvalues Al,...,ln of A such that ¢(a) is

convex, i.e.

(2) ¢(ar + (1-a)B) < a ¢(A) + (1-a)¢(B), 0 <a <1

when A, B are hermitian. In economics and biology one very often deals with
non-negative matrices. Denote by Al(A) the spectral radius of a non-negative
matrix A > O, i.e. the largest non-negative eigenvalue of A. The fact that
Al(A) >1 or Al(A) < 1 plays a crucial role in the stability behaviour of the
system. So any convexity results on Al(A) are helpful to estimate Al(A). Un-
fortunately (1) does not hold in general for A, B non-negative. In this paper
we prove the validity of (1) for A, B non-negative if B-A is a diagonal matrix.

We extend this result for more special type of non-negative matrices. To derive

ARG kb 0t

these results we bring new characterizations of the spectral radius of non-negative

matrices. i
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CONVEX SPECTRAL FUNCTIONS

Shmuel Friedland

1. Introduction

Let A be an n x n matrix with complex entries. We arrange the eigenvalues of A in
the following order

(1.1) Re A (A) > Re A,(A) 2...> Re A (A) .

By Hn we denote the set of all n x n hermitian matrices. For A ¢ Hn the classical maximal

characterization states

(1.2) Al(A) = max (Ax,x) .
= (xrx)'l

Thus )‘I(A) is a convex functional on Hn' Ky Fan extended (1.2) [3]

k k
(1.3) I @ o= max I (axx) .
i=1 (x.,x.)=6,. i=1
179 ij

k
In particular z A i(A) is a convex functional on Hn. A function
i=1 g

(1.4) ¢:A-»n(.4_c_Hn)

is called a spectral function if

- 2 n
(1.5) . ¢(A) =F(A (A),...,X (A), F:X+R, X RZ_ .

Here R: consists of all vectors (xl,...,xn) P XS > Xy 20> xn. In Section 2 of this paper

1 2

we characterize all F for which ¢ is a convex functional on A. It turns out that F must

be convex on X and F Schur's order preserving [11].
(1.6) F(a) < F(B) if a = (ul,...,an) <B= (Bl.---.Bn) ’

Pl
€ T B, &Ll
ge > T gey 4

(1.7)
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We also characterize all F such that ¢ is strictly convex. Let A be an n X n non-
negative matrix. As usual denote by r(A) the spectral radius of A. So Al(A) = r{(A). r(A)

is not a convex functional on non-negative matrices. For example consider

O e "
(1.9) A= (1 0> » X(A) = V& .

Recently [1] Cohen proved that r(A) is a convex function in i-th diagonal entry of A for
any 1 < i < n. We extend Cohen's result namely, we show that r(A+D) is convex on Dn -

the set of all n x n real diagonal matrices. In fact this result is a consequence of the
Donsker-Varadhan characterization of r(A) (2]. In Section 3 we bring more general characteri-
zations of r(A) by using a certain fundamental inequality for non-negative matrices establish-
ed in [5]. This enables us to show that 1log r(eDA) is also convex on Dn for a non-negative
A. If A-l happens to be an M-matrix then we have a stronger result. Namely, r(DA) is con-

+ < SR A 3
vex on Dn — the subset of non-negative matrices in Dn' This is done in Section 4.

In Section 5 we show how the results of Section 2 can be extended to the non-symmetric case
by assuming that A is a totally positive matrix of order j(TPj). We shall state our results
in case that A is a TP (=TPn) matrix. That is all minors of A (of all orders) are non-

negative. In that case we have
(1.10) A (€ > 2, 2.2 2 (PA) >0, DD .
If A is non-singular then the last inecuality is strict. Let
D D
(1.11) $(D) = F(log xl(e A),...,l0g9 Xn(e A)) .

Then ¢ 1is convex on A c Dn if and only if F is convex on X and Schur's order preserving.

We remark that the results in Section 2 hold for symmetric compact operators in Hilbert
space. The results of Section 3-5 can be extended to appropriate integral operators, for

example, as it was pointed out in [5].

-
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|
 1 3 2. cConvex functions on the spectrum of hermitian matrices
1
]

Let A be an n x n hermitian matrix. We can view A as a self adjoint operator on c”

3 A endowed with the standard inner product
| & ‘
e *
o (2.1) Geegl myx Ry 8T
E' gf Since the eigenvalues of A are real we arrange them in the decreasing order
i: (2.2) Al(A) 1...3_An(A) .

Denote by El,...,en the corresponding set of orthonormal eigen-vectors of A

] ii (2.3) AEi = Ai(A)Ei. (Ei.Ej) = Gij’ i,j=1,...,n .
a &1 ;
R Let Hn denote the set of all n x n hermitian matrices. Since Al(A) has the maximal
! characterization
Al(A) = max (Ax,x) ,
(x,x)=1

AI(A) is a convex function on Hn' More generally we have [4]

Theorem 2.1. Let {ai}n be a decreasing sequence of real numbers

(2.4) al > “2 200> an o

Then for any A belonging to H;
n n

(2.5 I ey = max 1 o ax x) .
i=1 (xi,xj)=61ji,3=l,...,n i=1

Assume that the equality sign holds for some xl,...,xn. Let

(2.6) A, == Q > a =...= ui Seie s> o o == a, = nn,(io=0) .

1 1 2 r-1 £

Then there exists an orthonormal eigensystem of A such that the following subspaces coincide

(2.7) [51 +1""'€i ] = [x:l +l""'xi 13 =0,0ccpx=1 .
a 3j j+l

j j+1

The characterization (2.7) in the case that a, =...= ui =1,

...= a_ =0 was established
1 n

Yel

by Fan (3].




In particular

n
(2.8) o) = | a.A (A)
it e

1 is a convex functional on Hn if (2.4) is satisfied. That is

3 (2.9) ¢(cA + (1-c)B) < cé(A) + (1-c)¢(B), A,B H , 0<c<1

4 We now are ready to state the problem which we solve in this section. A function

(2.10) ¢ :A>R,Ac Hn

is called a spectral function if

(2.11) ¢(a) = F(Al(A),...,An(A)) 5

That is ¢ is defined on the spectrum of A. Our problem is to characterize all convex
spectral functions on Hn. To answer this problem we introduce some notation and definitions.
Let a = (al""'un) and B = (81,---.Bn) be two vectors satisfying (2.4). According to

[7, sec. 2.18] a is majorized by B, which is denoted by o < B, if

k k
(2.12) 1 o< } B k=l.oml
| i=1 i=1
| '
| A 1
k. (2.13) a, = B = 1
| gm0 1ogm 1
|
;’ Denote
(2.14) 4 A(p) = (Al(A),.--,An(A)) .
|
1,1 From Theorem 2.1 we obtain
Lemma 2.1. Let A, B ¢ Hn. Then
(2.15) A(A+B) < A(A) + A(B) .
Moreover,
(2.16) A(A+B) = A(A) + A(B) 1
if and only A and B have a common eigenvector system




(2.17) Ati = M(A)Eio 551 - Ai(s)zil (Ei.Ej) - 615' i,j=1,...n .

Proof. Let

(2.18) (A-O-B)Ei = Ai(lﬂ)ﬁi. ‘E:I.'Ej, = 6”, i,j=2,...,n .

Sso for any a = (ul,...,an) which satisfies (2.4) we get

n n
(2.19) I a . (a+B) = | a ((A+B)E ,E,) <
4oy 14 4oy 1 ik
) )
a. A, (A) + a2, (B) .
1_111 i-lii

This establishes (2.15). Suppose that (2.16) holds. Then we must have

n 0 o n n
(2.20) Y s = § o BB, | oA ) = } o (BE..ED ..
oy B4 PN i g TR o

for any 20, 2...>a

conclusion is in fact is stated in Theorem 3.1 in [4].

ne Choose a, = n-i. Then the equalities (2.7) imply (2.17). This

By K| denote the following subset of R

4

(2.21) R; = {x|x = (Xyrveerx Do %) > X5 20002 x} .
Clearly

(2.22) AiHo» n; (@) = O @) ,.ccn (B)) .
Let

(2.23) A(4) = x .

Thus the function F in terms of which ¢ is constructed satisfies F : X + R.

Let Dn be the set of all n x n real diagonal matrices and D;lz the set of all diagonal

matrices

(2.24) D(a) = diag {a;,...,a }, a; >0, 2.cc2 0 .

1 2 n
Given X c R: we recuire that A should be of the form

(2.25) 4«1l . 1

15




Suppose B € X. Then D(B) € A. Thus the assumption that ¢ is convex on A implies in

particular that ¢ is convex on D:; n A. So we must have that F is convex on X which means

also that X must be convex. Let D(B) ¢ A and P be a permutation matrix (Gij+1)?'

(n+l = 1). Then

"

i n
(2.26) =(] B/mr1 .
i=1

3=

T i T
Y P'D(B) (P)
i=1

Here by PT we denote the transpose of P. Therefore if B € X then E = (b,...,b) € X

(b= ) B;/n . This in particular implies that
i=1

(2.27) if Be X, a < B, then a € X.

Definition 2.1. Let X ¢ R‘: . The set X is called strongly convex if X is convex and the

condition (2.27) is satisfied.

Theorem 2.2. Let X be a strongly convex set in :R: which contains at least one point a,

(2.28) o > a, P oo O .

Let F: X> R. Assume that F ¢ c(l) (X). Consider a spectral function ¢ : 4 > R(4 c Hn)

where ¢ and A g&re given by (2.11) and (2.25) accordingly. Then ¢ is convex on A if and

only if F 1is corvex on X and

JF F 3F
(2.29) ax, (a) > o, (@) 2...> 22— (a)

for any a € X. Moreover, ¢ is strictly convex on A4, i.e.

(2.30) ¢(cA + (1-c)B) < cé(A) + (1-c)¢(B), A #B, 0 <c <1 ,

if and only if F is strictly convex on X and

aF JF "
(2.31) = (a) > % (a) if a; > ag,
o i+l

To prove the theorem we need the following theorem of Ostrowski [11] (Theorems VII and

VIII).

-6~
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Theorem 2.3. Let X and F satisfy the assumptions of Theorem 2.2. Then F satisfies (2.29)

if and only if
(2.32) F(a) < F(B) 4if o < B.

Moreover

(2.33) F(a) <F(B) if a < B and a # B

if and only if the condition (2.31) holds.

Proof. Assume first that F is convex on X. So if A(a), A(B) € X then

(2.34) F(M);-&)—

) <3 (FA)) + FOB))) .

According to Theorem 2.3, the assumption (2.29) implies

(2.35) rAMAB), g

A(A)+A(B),
2 {

by the virtue of (2.15). This shows that ¢ is convex on A. Assume furthermore that F is
strictly convex on X. So if A(A) # A(B) the inequality sign holds in (2.34). This implies
(2.30). Suppose that A(A) = A(B) but A # B. According to Lemma 2.1 A(A+B) # (A(A) + A(B)).
So the additional assumption (2.31) yields the inequality sign in (2.35) according to Theorem
2.3. This manifests that ¢ is strictly convex on A. Assume now that ¢ is convex on A.

In particular ¢ is convex on D: n A. This immediately implies that F ?s convex on X.
Furthermore if ¢ is strictly convex then F is strictly convex. Let B ¢ X. So D(B) € 4.

Assume that o < B. Then D(a) € A. The classical result of [7,sec. 2.19] states that
(2.36) GB=a ,

where G is some doubly stochastic matrix. The Birkhoff theorem implies

k k
(2.37) s § EP..n 20, ] A el
jop 1 b e | =y
and Pi is a permutation matrix. So
' b
(2.38) D(a) = | a;P.D(BIP, .

i=1

So the convexity of ¢ implies




k
(2.39) (b)) < § a6(2,D(BF) = 4(D(B)
i=1

which is equivalent to (2.32). Now (2.29) follows from Theorem 2.3. Assume furthermore that
¢ is strictly convex. Then we must have (2.33) which implies (2.31) according to Theorem 2.3.
The proof of the theorem is concluded.

Suppose

(2.40) Ac Hm, m>n .

When we can define ¢ : A * R by (2.11). That is ¢ does not depend on An+1(A),...,xm(A) v

JF

i.e. g 0 for i > n. In that case Theorem 2.2 reads:
i

Corollary 2.1. Let the assumptions of Theorem 2.2 hold except that we have (2.40). Then ¢ is

convex on A if and only if F is convex on X, the inequalities (2.29) hold and in addition

oF

(2.41) X
n

(@) >0, a e X .




3. Some characterization of the spectral radius

Let A be an n X n non-negative matrix such that there exists two positive vectors u, v

satisfying

T T .
(3.1) Au = r(A)u, Av'= r(A)v, ul = (B snssiti) > 00 ¥ = (W ,00nv ) >0 .

Assume the normalization

n
€3.2) .I uivi i L e
i=1

Let Pn be the set of probability vectors

n
>0, ] a =1} .

(3.3) P = {a|la = (a
n <
i=1

,un), [

preee i

In [5, Sec. 3] it was manifested

Theorem 3.1. ‘Let A be an n X n non-negative irreducible matrix having positive entries on

the diagonal (or fully indecomposable, see Remark 3.3 in [5]). Then for any o € Pn, with
(Ax)

X,
1

n
positive entries (ai > 0). The function f(x) = z o, log has a unique critical point
i=1

£ = (El,...,gn) in the interior point of Pn(Ei > 0) which must satisfy

n (Ax)i n (AE)i
(3.4) min |} a; log—/—= = z a, log ST,
x>0 i=1 i i=1 i
Thus, if o is chosen to be
{3.5) a = (ulvl,...,unvn) i

where u and v satisfy (3.1) - (3.2) then

(ax) o
> log r(a) ,

n
(3.6) .Z uv, log %
i=1 i

since x = u is a critical point of f(x).

From Theorem 3.1 we get

Theorem 3.2. Let A be an n X n non-negative matrix such that r(aA) > 0. Then

n (ax) .

(3.7) sup inf Z a, log - . log r(a) .
aePn x>0 i=1 3

L R e g




v

Suppose that there exists a positive vector u satisfying (3.1). Assume that

(Ax) .

n

(3.8) inf | a; log— X = 1log r(a) .
x>0 i=1 i

Then the vector v

(3.9) v = (al/ul,_.,,an/un)

fulfills (2.1). In particular if A is irreducible then o is unique and given by (3.5).

Proof: As the left-hand side of (3.7) is a continuous function of A it is enough to prove

(3.7) for A positive. Let u > 0 be the corresponding eigenvector of A. So

n (Ax)i n (Au)i
inf ) dg Mo ==t ) a; log ——= = log r(a)
x>0 i=1 i i=1 i

n
for any o such that ) a;, = 1. Thus
i=1

(Ax)i
< log r(d) .

n
sup inf .Z a; log —
aePn x>0 i=1 i

The above inequality together with (3.6) yields (3.7). Suppose that (3.8) holds. If u > 0

n (Ax) .
satisfies (3.1) then x = u is a minimal point for £(x) = z a, log L. so
i=1 ¥;
0 agy o n
0= gEL =3 7%;%1 = ;l =rm? ) aiuilai. S
jle=u =1 i *j[x=u i=1 s R

This shows that v given by (3.9) is a left eigenvector of A corresponding to r(A). If A
is irreducible, then u and v are unique up to a multiple of a positive scalar. Thus a is

of the form (3.5) and since a € Pn' o unique. The proof of the theorem is completed.

We now bring an extended version of Theorem 3.2 which includes (3.7) and the Donsker-
Varadhan characterization [2] as its special cases.

Theorem 3.3. Let ¥ : R+ IR be a continuous convex function on R . Define ¢ : R+ + R

(3.10) : $(x) = ¥(log x) .

Let A be an n X n non-negative matrix such that r(A) > 0. Assume

¥'(log r(a)) > 0 .

=10~
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Jon?

n (Ax)i
(3.12) sup inf ] a0 = o(r(A) .
uePn x>0 i=1 =

Assume that the inequality sign holds in (3.11) and suppose that there exists a positive vector

u satisfying (3.1). If

n (Ax) )
(3.13) inf J aio(x = d(r(a)) ,
x>0 i=1 i
then the vector v (3.9) satisfies (3.1). 1In particular if A is irreducible then a is

unique and given by (3.5).

Proof. Let to = log r(a), Y'(to) = e. Then the convexity of ¥ implies

Y(E) > ¥(E) + (t-t)¥'(ty) .

So
n (Ax)i
(3.14) I o0 > (8(x(A)) - e log r(A)
=
i=1 i
rz\ (l\x)i
+ e a, log ' o€ P 5
§ml b 8 xi n

As e > 0 from Theorem 3.2 and the above inequality we get

n (Ax) i
(3.15) sup inf Z o, ol — > o(r(a)) .
aeP_ x>0 i=1 i
n
Since ¢ is continuous we may assume that A is positive. By choosing x = u the left-hand
side of (3.15) we deduce an opposite inequality of (3.15). This establishes (3.12). In case
the e > 0 we use the arguments of Theorem 3.2 to analyze the equality (3.12). End of proof.

Letting y(x) = e® in Theorem 3.3 we obtain the Donsker-vVaradhan characterization [2].

Corollary 3.1. Let the assumptions of Theorem 3.2 hold. Then

n (Ax):l
(3.16) . owp inf ] e—====rd) .
aan x>0 i=1 i

Suppose that

gk
o

Sl e i




bt |

n (Ax)i
(3.17) inf | o — = 2R -
x>0 i=1 i
If A has a positive eigenvector u then the conclusions of Theorem 3.2 apply.

Recall the classical characterization due to Wielandt [12)

(Ax)

(3.18) inf max
x>0 1<i<n i

= r(a)

for any non-negative A. Assume that ¢ is an increasing function of x on R, . So

n (Ax) (ax)
inf sup 2 uio . = inf max ——
x>0 aeP i=1 i x>0 \1l<i<n i

(M)i
= ¢| inf max = = d(x(n)) .

x>0 1<i<n i

(3.19)

Thus if ¢ is increasing and satisfies the assumptions of Theorem 3.3 then we can inter-
change sup -with inf in (3.12). The characterization (3.19) is completely equivalent to the
Wielandt characterization (3.18) while (3.12) seems to be a deeper characterization.

Let A be a non-negative and non-singular. Assume furthermore that A-l is an M-matrix,
i.e. the off-diagonal elements of A-I are non-positive. Following [5] we bring another

characterization of r(a).

Theorem 3.4. Let A be a non-negative and non-singular matrix such that A-l is an M-matrix.

Then

21 1

n
(3.20) inf sup | o, —— = ——
i, " r@)

cePn x>0 i=1

Assume that there exists a positive vector u satisfying (3.1) and suppose

n x
(3.21) sup J a
x>0 i=1

R AegRage:
i, T @ C

Then v given by (3.9) satisfies (3.1). In particular if A is irreducible then a is unique

and given by (3.5).

Proof. We have available the representation

(3.22) Al = r1-8, B3>0, r> r(®

allew




3
-

and B is reducible if and only if A is reducible (e.g. [8, chap. 8].

Again, as in the

proof of Theorem 3.2 one may assume that B is positive. By letting x to be equal to the

positive eigenvector u of A we immediately deduce

n i
% )

(3.23) inf
u.ePn x>0 i=1

> :
s r(a)

Let o be given by (3.5). Obviously for any x > 0 and y = Ax

-1
n x n (A 7y) n (By)
i i i
(3.24) Y uw =] uv, —==r - MV ——
mp AR G Ay . A4 Yy
From Corollary 3.1 it follows
n (By)
(3.25) : I uy, —=>rm .
i=1 L
So
n X
i . 1
(3.26) J uv, ——<r-r(B =
P ST r(a)

and the equality sign holds if x = u. This establishes (3.20). The equality (3.21) is

analyzed in the same way as in Theorem 3.2.

Remark 3.1. Theorem 3.4 does not hold for arbitrary non-negative matrices, take for example

A to be a permutation matrix P # I. Therefore Theorem 3.4 is not a special case of Theorem

3.3.

-13=-




4. Convexity properties of the spectral radius

Let A be an n x n non-negative matrix. Consider the matrix A + D, D ¢ Dn. Assume

that the eigenvalues of A + D arranged in the order

(4.1) Re 1,(A) > Re A,(A) >...> Re AL (A
Let

(4.2) p(D) = Xl(A+D) .

We claim that p(D) is real. If D is non-negative this fact is a consequence of the Perron-~

Froberius theorem. For an arbitrary D consider A + D + aI

(4.3) Ak (A+D+al) = Xk(A+D) +a, k=1,...,n
for a big enough A + D + aI >0 and (4.3) implies that p(D) is real. Moreover by consider-~
ing the matrix B=A + D + al and using the Donsker-Varadhan characterization for B we get

the following characterization for p(D)

(4.4) p(D) = sup Ll(D,u) -

aePn
Here Ll(D.a) is a linear functional on Dn

n n (Ax)i
(4.5) Ll(D.a) = Z a,d, + inf a,

A e A

a = (al,...,an), D = diag{dl,...,dn} %

It is a standard fact (4.4) and (4.5) imply the convexity of p(D) on the set Dn. More pre-

cisely we have:

Theorem 4.1. Let A be a fixed n x n non-negative matrix. Assume that p(D), D € Dn' is

given by (4.2). Then o(D) is a real valued convex functional on Dn.

(4.6) p((Dy+D,) /2) < (p(Dy) + p(D,))/2 .

Moreover if A is irreducible then the equality sign holds in (4.6) if and only if

(4.7) D, = D, =

for some a.

=]




Proof. As we pointed out (4.6) is a consequence of (4.4). So it is enough to analyze the

equality case. Let

T
u=ru AV=rv,r

(4.8) Al =A + (Dl*Dz)/zy Al 1 1 1 1

= p((D;+D,)/2) .

As A is irreducible we may assume that u, v > 0 and the normalization (3.2) holds. Let a

be given by (3.5). So

E (Alx)i n (Alu)i
(4.9) L. ((D,+D,))/2,a) = inf a = a =y,
1 172 250 del i xi i=1 i ui 1

If we apply the results of Section 3 in [5]

E (Bx)i
(4.10) f(x,B) = a
jey Xy

where B + bI is irreducible matrix, for some positive b, then £(x,B) has a unique critical
point in the interior of Pn which must be the minimum point (f(x) = +» on the boundary of

Pn). The equality sign in (4.6) implies

(4.11) Ll(Dl,a) = p(Dl), Ll(Dz'u) = p(Dz) .
That is
(4.12) £(x,A+D)) > £(u,A+D,) = o(D;), £(x,A+D,) > £(u,A+D,) = p(D,) .

The uniqueness of the minimal point of £(X,B) implies

(4.13) (A+D1)u = p(Dl)u. (A+D2)u = p(Dz)u .

As u > 0 (4.7) follows the above equality. The proof of the theorem is completed.
The inequality (4.6) extends Cohen's result [1]. Let A be a non-negative matrix such

that r(A) > 0. Clearly, for any D ¢ Dn' t(eDA) is also positive. Define

(4.14) R(D) = log r(ePn) .

According to Theorem 3.2,

(4.15) R(D) = sup Lz(D,a) '
uePn
where
«]18§=
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(Ax)

i
i log x; »

n n
L,(D,a) = J a.d, + inf la
2 T R . e

Combining (4.15) and (4.16) and using the uniqueness result stated in Theorem 3.1 as in the
proof of Theorem 4.1 we deduce.

Theorem 4.2. Let A be a fixed n x n non-negative matrix having a positive spectral radius.

Assume that R(D) is given by (4.14). Then R(D) is a convex functional on Dn.

(4.17) R((D,+D,)/2) < (R(D;) + R(D,))/2 .

Moreover if A is irreducible and the diagonal entries of A are positive (or A is fully in-

decomposable) then the equality sign holds in (4.17) if and only if (4.7) holds for some a.

Assume that A, B € Hn and furthermore A is positive definite ((Ax,x) > 0 for x # 0).

BA is similar to A 2mal/?

. This shows that Xl(BA) is a convex functional on Hn for
a fixed positive definite A. If in addition A has non-negative entries then xl(DA) is con-
vex on Dn' This result does not apply in general for non-negative matrices. For example, take

+
A to be a permutation matrix P # I. However, Al(DA) is convex on Dn - the set of n x n

non-negative diagonal matrices if A-l is an M-matrix.

Theorem 4.3. Let A-l be an M-matrix. Then r(DA) is a convex functional on D;.

(D,+D,) 1
(4.18) r\—>5—A] <35 (x(DA) + xr(DA)) .

Moreover if A is irreducible then the equality sign in (4.18) holds if and only if

(4.19) D, = aD,

for some positive a provided that D. or D2 have positive diagonal elements.

1

Proof. Using the continuity argument we may assume that in the decomposition (3.22) B is
positive (irreducible), i.e. A is positive (irreducible). Thus if all diagonal elements of
OA is positive (irreducible). According to the
Perron-Froberius theorem r(DoA) is a simple root of the det(\AI - DOA) = 0. By the implicit

D,y = diag (dg,...,d:} are positive then D

function theorem r(DA) is an analytic function of D in the neighborhood of D Then the

0°

convexity of r(DA) would follow if we show that

]G
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n
(4.20) £(DA) > r(DA) + [ (d -a(0)) 2riDA)
i=1 D

for any Do with positive diagonal elements. Let £,n be the eigenvectors corresponding to

T
DOA and A Do

(4.21) DAAE = r(DA)E, ATDOn = r(AIN

n
0 < &= (E,.esf), O <m=(N,.0im), )) g, =1 .
i=1

It can be shown that

£
ar(oA)| _ T 3D .. _ oL
(4.22) R B Gl e e T R R
i Ip i a

This can be done by bringing 'DOA to the Jordan form and using the simplicity of r(DoA). See
for example [10, II, §5.4]. Thus (4.20) is equivalent to

n di
(4.23) r(DA) > r(OA) | —o En, -

i=1 di

This inequality was established in [5]. It follows directly from (3.26). Indeed suppose

that D has positive diagonal elements and let

(4.24) DAw = r(DA)w, w = (“i""'"n’ >0 .

Then according to (3.26)

n w

1 i
SR o e | 4
r(DOA) i=1 i'i (Dko) i { i
| §
n d, w n d, { i
1 i ~
Yy £, — T e .5
i=1 ; i d§0) (DAw)i r(DA) je1 1 i d;O) ! |

which establishes (4.23) for D with positive diagonal. So (4.18) holds in the interior of

+

Dn' The continuity argument implies the validity of (4.18) on D;. Suppose that A 1is also
irreducible. Then B in the decomposition (3.22) is also irreducible, since the inverse of
block triangular matrix is also a block triangular one. As in the proof of Theorem 4.1 strict

inequality holds in (4.23) unless Dy and DA have the same positive eigenvector. So

«]17=-

—
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D= lDo for some a > 0. This shows that we have strict inequality in (4.18) unless (4.19)

holds provided that Do (which is either Dl or Dz) have positive diagonal. The proof of
the theorem is completed.
We conclude this section by pointing out that the convexity of r(DA) on D; is a strong-

er result then the convextiy of log r(eQA) on Dn' Indeed, let

Q
o 0 0
(4.25) Dy = s 9 = {al?”,....q'", a\? = 109 K T

Suppose that log r(eQA) is convex at Q = QO' This means

-1 i‘ ar(e2a) (0)

(4.26) log r(eQA) > log r(DOA) + r(DOA) 3‘31 |Q-Qo(qi_qi ), Q= diag{ql....,qn}.

i=1
As in the proof of Theorem 4.3
ar(eQA) R aeQ g 53
(4.27) 3q |Q-Q n 3q. |0 AE l‘(DOA)niEi: i=1,...,n
i 0 i'*0
where n,f given by (4.21). i
Thus (4.26) is equivalent X
g.n
0 AN o N0
(4.28) r(e*A) > r(D.A)N|[— -r(DOA) (= v q, = logd,,i=1,....,n
- (0] 0 (0) s i
di i=1 di

Using the relation between the arithmetic and the geometric means from (4.23) we get

8 1)':1 o a7 )"’1“1
(4.29) r(e?a) > r(p a) S _—¢tn, >r(pa n(&— .
i a;°’ iy gy d;m

That is the convexity of r(DA) at DO € D; implies the convexity of 1log r(eQA) at 1
QO = log Do. This demonstrates that the convexity of r(DA) on D: implies the convexity of
log r(eDA) on Dn' On the other hand if A 1is a permutation matrix # I then r(DP) is not

convex on D; (for details see [5], Section 3).

-18-
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S. Convex functions on the spectrum of totally positive matrices

A real valued n X n matrix is called a totally (strictly totally) positive matrix of
order k if all minors of A of order less or equal to k are non-negative (positive). We
denote these matrices by 'er(S'er) . For j = n we call these matrices simply by TP(STP). A
matrix A is called oscillating if A is TP and some power of A is STP. It is known that

a TP matrix if oscillating if and only if

n
(5.1) a4 20,2559y 0030444y >0i=1,...m, A= (aij)l >0 .

In that case A is totally indecomposable.

If A is 'I'Pj then

(5.2) A B) 22, (R) 2.2 A (A) > ka(a)l, o T [ R R

If A is S'er then we have strict inequalities in (5.2). See [6] and [9] for proofs of these
results and more properties of these matrices. Let A be 'er. Define ¢ : A > R(4 ¢ Dn)

as follows

(5.3) ¢(D) = F(log Al(eDA),...,log Aj(eDA)) :

As in Section 2 we werelooking for necessary and sufficient conditions on F which imply
that ¢ is a convex function on A ¢ D for any A which is TPJ.. It turns out that we have
an analogous result to Theorem 2.2. To do so we need few notations and definitions. Let

a = (a),...,a,) and B = (Byse-+sB,) and j < n. We define @ << B if (2.12) holds for

3 3
k=1,...,j. Thus if a = (al,...,cn). B = (Bl,...,Bn) and a < B then a << B. Conversely,
if a <<B wecanextend a to a and B to B such that a < B. A set ;(-5 Rz is

called a super convex if X is convex and

e-i,;«-i, then ;ei 5

»|

(5.4) if

v .

Clearly X is super convex in R if and only if it could be extended to X ¢ R: such that

X is strongly convex in R: . Using the above arguments and Ostrowski's result (Theorem 2.3)

we get

Lemma 5.1. Let X be a super convex set in Rz . Let F: X~ R. Assume that F e c'! X .

-19-
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Then

(5.5) F(a) <F(B) if o << §
if and only if , .
5 §
F ~— _ F ,~ F -
(5.6} . (@) 2 5 (@) 2.2 32~ (a) 20 3
1 2 3 ?

for any a ¢ X. Moreover strict inequality in (5.5) holds for & ¥ B if and only if

F - oF = F -

(5.7) a— (a)> (@) if a, >a, ., 53— (a) >0 if a,6 >0 .
axi axi_"l i i+l axj 3

Assume that A is TPj. Denote

(5.8) Ay - (A ) ,...oA (A)) , log A3 (a) = (log A B, log A ()

Theorem 5.1. Let A be an n X n non-singular 'I‘Pj matrix. If j < n then

(D +Dz)/2

D D
(5.9) log AP (e m <« 2109 23 (e 1a) + 109 1P (e Zan) ,
If j=n then
(D,+D.) /2 D D g
(5.10) log AMe = 2 A) <3 [log A(e ‘M) + log Ale M1 .

If in addition A satisfies (5.1), or more generally A is totally indecomposable, then

) (D1+Dz)/2

1 D
(e A) -5[109)‘

1 D
(e "A) + log A

3 (e 2A)]

(5.11) log A 3

for any 1< j<n if and only if (4.7) is satisfied for some a.

Proof. Denote by ck(a) the k~th compound of A. Thus

\Pk(D)

D
(5.12) Ck(e ) =e

where wk is well defined map ‘pk : Dn -»Dn . It is easy to see using the properties of the
()

L]
compound matrices that wk is a linear umpk According to Theorem 4.2 iag t(eD Ck(A)) is con-

vex on D & for k=1,...,5. Note that the non~singularity of A implies that r(ck(A)) > O

)

(D)
Thus 1log r(e Ck(A)) is convex on Dn. Let




e ey

e il 55N

k
(5.13) R (D) = ] log xi(."m :
i=1

It is well known that

(5.14) R (D) = log :(ck(."n)) :

Therefore Rk(D) is convex on Dn for k =1,...,j. This is equivalent to (5.9) for j < n.

For j =n, Rn(D) is linear on D as

n
(5.15) R (D) = log det(e”A) = ] 4. + log det(a) .
n i=1 i

This verifies (5.10) if A is a TP matrix. Suppose that in addition A is totally indecom-
posable. According to Theorem 4.2 we have a strict inequality in (4.17) unless (4.7) holds.
Thus (5.11) can be satisfied if only (4.7) holds. Trivially (4.7) implies (5.11). The proof
of the theorem is completed.

Theorem 5.2. Let X be a super convex set in ng for 1 < j <n (a strongly convex con-

(1)

taining a point &, @) >...>qa, if j =n). Let F: X »R. Assume that F e C  (X). Let

A be a given n X n non-singular TPj matrix. Consider a spectral function ¢ : A + R,

iven (5.3), where A is a convex set in D such that
given by n

(5.16) 109 %P c X, Deca .

Then, for all such A, ¢ is convex if and only if F is convex on X and satisfies (5.6) in

case that 1 < j < n. Moreover, if A is totally indecomposable then ¢ is strictly convex if

and only if F is strictly convex and satisfies (5.7). In case j =n, ¢ is convex (strictly

convex provided that A is totally indecomposable) if and only if F satisfies the assumptions

of Theorem 2.2.
Proof. A proof of this theorem can be achieved by modifying in the obvious way the proof of

Theorem 2.2. In fact, all the arguments of the proof of Theorem 2.2 carry over if one notices

that the identity matrix is TP.
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